Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stimulus evoked causality estimation in stereo-EEG
 
research article

Stimulus evoked causality estimation in stereo-EEG

Cometa, Andrea
•
D'Orio, Piergiorgio
•
Revay, Martina
Show more
October 1, 2021
Journal Of Neural Engineering

Objective. Stereo-electroencephalography (SEEG) has recently gained importance in analyzing brain functions. Its high temporal resolution and spatial specificity make it a powerful tool to investigate the strength, direction, and spectral content of brain networks interactions, especially when these connections are stimulus-evoked. However, choosing the best approach to evaluate the flow of information is not trivial, due to the lack of validated methods explicitly designed for SEEG. Approach. We propose a novel non-parametric statistical test for event-related causality (ERC) assessment on SEEG recordings. Here, we refer to the ERC as the causality evoked by a particular part of the stimulus (a response window (RW)). We also present a data surrogation method to evaluate the performance of a causality estimation algorithm. We finally validated our pipeline using surrogate SEEG data derived from an experimentally collected dataset, and compared the most used and successful measures to estimate effective connectivity, belonging to the Geweke-Granger causality framework. Main results. Here we show that our workflow correctly identified all the directed connections in the RW of the surrogate data and prove the robustness of the procedure against synthetic noise with amplitude exceeding physiological-plausible values. Among the causality measures tested, partial directed coherence performed best. Significance. This is the first non-parametric statistical test for ERC estimation explicitly designed for SEEG datasets. The pipeline, in principle, can also be applied to the analysis of any type of time-varying estimator, if there exists a clearly defined RW.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Cometa_2021_J._Neural_Eng._18_056041.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.19 MB

Format

Adobe PDF

Checksum (MD5)

d480e0d4b39a5faf17bd855a9ebe45b8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés