Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Deconvoluting cracking mechanisms in fusion processing of steel-copper multi-materials via <i>Operando</i> X-ray characterisation
 
research article

Deconvoluting cracking mechanisms in fusion processing of steel-copper multi-materials via Operando X-ray characterisation

Özsoy, Andaç  
•
Hearn, William A.
•
Gaudez, Steve
Show more
July 10, 2025
Virtual and Physical Prototyping

This study investigates various cracking mechanisms and their prevalence in fusion processing of steel-copper multi-materials using operando X-ray diffraction and imaging during laser powder-bed fusion (LPBF) of 316L-CuCrZr multi-material. During this investigation, three main types of cracking were identified: (i) solidification cracking, (ii) metal-induced embrittlement (MIE), and (iii) liquation cracking. All cracking types are closely related to phase formation during processing and stem from two underlying mechanisms. First, liquid-liquid phase separation (LLPS) and the monotectic reaction in the 316L-CuCrZr system cause two liquids with vastly different solidification ranges to form, leading to solidification cracking. Second, LLPS and the monotectic reaction uniformly distribute Cu-rich liquid between the Fe-rich dendrites, leading to MIE and/or liquation cracking. Conducted based on the insights gained from the operando characterisation, further experiments showed that cracking can be drastically reduced by avoiding phase separation. However, the complete elimination of cracking necessitates chemical alterations in the material feedstock, indicating that while process adjustments can mitigate cracking, they may fail to fully prevent it. These findings serve as a guideline for understanding the underlying causes of cracking in steelcopper multi-materials, how process optimisation can effectively mitigate cracking, and to what extent such adjustments in processing can achieve this outcome.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Deconvoluting cracking mechanisms in fusion processing of steel-copper multi-materials via Operando X-ray characterisation.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

4.56 MB

Format

Adobe PDF

Checksum (MD5)

78ff86bf447c237e7add3399722d13b2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés