Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Synthesis of Predictable Networks-on-Chip Based Interconnect Architectures for Chip Multi-Processors
 
research article

Synthesis of Predictable Networks-on-Chip Based Interconnect Architectures for Chip Multi-Processors

Murali, Srinivasan  
•
Meloni, Paolo
•
Atienza, David  
Show more
2007
IEEE Transactions on VLSI

Today, chip multiprocessors (CMPs) that accommodate multiple processor cores on the same chip have become a reality. As the communication complexity of such multicore systems is rapidly increasing, designing an interconnect architecture with predictable behavior is essential for proper system operation. In CMPs, general-purpose processor cores are used to run software tasks of different applications and the communication between the cores cannot be precharacterized. Designing an efficient network-on-chip (NoC)-based interconnect with predictable performance is thus a challenging task. In this paper, we address the important design issue of synthesizing the most power efficient NoC interconnect for CMPs, providing guaranteed optimum throughput and predictable performance for any application to be executed on the CMP. In our synthesis approach, we use accurate delay and power models for the network components (switches and links) that are obtained from layouts of the components using industry standard tools. The synthesis approach utilizes the floorplan knowledge of the NoC to detect timing violations on the NoC links early in the design cycle. This leads to a faster design cycle and quicker design convergence across the high-level synthesis approach and the physical implementation of the design. We validate the design flow predictability of our proposed approach by performing a layout of the NoC synthesized for a 25-core CMP. Our approach maintains the regular and predictable structure of the NoC and is applicable in practice to existing NoC architectures.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

04276784-IEEE_TVLSI2007.pdf

Access type

openaccess

Size

1.07 MB

Format

Adobe PDF

Checksum (MD5)

8a0f7be0d3752e91203eaebd9f867691

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés