In industrial applications, the controlled adjustment (trimming) of resistive elements via the application of high voltage pulses is a promising technique, with several advantages with respect to more classical approaches such as the laser cutting method. The microscopic processes governing the response to high voltage pulses depend on the nature of the resistor and on the interaction with the local environment. Here we provide a theoretical statistical description of voltage discharge effects on disordered composites by considering random resistor network models with different properties and processes due to the voltage discharge. We compare standard percolation results with biased percolation effects and provide a tentative explanation of the different scenarios observed during trimming processes.