Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the electron sheath theory and its applications in plasma-surface interactions
 
research article

On the electron sheath theory and its applications in plasma-surface interactions

Sun, Guangyu
•
Zhang, Shu
•
Sun, Anbang
Show more
September 1, 2022
Plasma Science & Technology

In this work, an improved understanding of electron sheath theory is provided using both fluid and kinetic approaches while elaborating on their implications for plasma-surface interactions. A fluid model is proposed considering the electron presheath structure, avoiding the singularity in electron sheath Child-Langmuir law which overestimates the sheath potential. Subsequently, a kinetic model of electron sheath is established, showing considerably different sheath profiles in respect to the fluid model due to non-Maxwellian electron velocity distribution function and finite ion temperature. The kinetic model is then further generalized and involves a more realistic truncated ion velocity distribution function. It is demonstrated that such a distribution function yields a super-thermal electron sheath whose entering velocity at the sheath edge is greater than the Bohm criterion prediction. Furthermore, an attempt is made to describe the electron presheath-sheath coupling within the kinetic framework, showing a necessary compromise between a realistic sheath entrance and the inclusion of kinetic effects. Finally, the secondary electron emissions induced by sheath-accelerated plasma electrons in an electron sheath are analysed and the influence of backscattering is discussed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

accepted.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

1.61 MB

Format

Adobe PDF

Checksum (MD5)

3e5485d6833fe8b6c45984d79994a64d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés