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ABSTRACT  

Zinc and tin oxides are both earth-abundant materials with demonstrated applicability as electrodes in several 
optoelectronic devices. The presence of grain boundaries in these polycrystalline films generally limits the electron 
mobility. By a combinatorial study of ZnO and SnO2, a transparent conducting amorphous zinc tin oxide (ZTO) 
electrode, free of grain boundaries, with a dense (void-free) microstructure has been developed. We show how tuning the 
stoichiometry (Zn4.5Sn30.2O65.3) and film’s microstructure during sputtering deposition, allows achieving electron 
mobilities up to 25 cm2/Vs and free carrier concentrations of ~ 7 x 1019 cm-3. The effects of post-deposition thermal 
treatments are furthermore studied. The ZTO films keep their dense amorphous microstructure upon annealing up to 500 
°C, as confirmed by cross-section TEM and XRD, while presenting a clear improvement in electron mobility up to 35 
cm2/Vs when annealed in oxygen-rich atmospheres.  
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1. INTRODUCTION  
Zinc oxide (ZnO) and tin oxide (SnO2) are both known transparent conductive oxides (TCOs), largely studied since the 
1950’s.1 ZnO, on one side, has been widely used as electrode in photovoltaics, due to its excellent optoelectronic 
properties as well as the tunability of its microstructure.2,3 However, ZnO is not chemically stable, restricting its 
application in devices for which the substrate is the TCO layer and chemical cleaning is required, e.g. organic light 
emitting diodes (OLEDs). SnO2 on the other hand, is a chemically stable TCO,4 however, it presents high free carrier 
absorption (FCA) when dopants are introduced (e.g. F-doping).5,6. Zn-Sn-O (ZTO) multi-compounds have also been 
reported in literature for application as active channel in flexible thin film transistors, due to its amorphous structure and 
low free carrier concentration.7,8 Due to its limited conductivity, ZTO has not been widely exploited as a transparent 
electrode. In this manuscript, the development of ZTO with the specific composition of Zn4.5Sn30.2O65.3 that has an 
optimized transparency and conductivity is presented. The effects of the microstructure and post-deposition thermal 
treatments on the optoelectronic properties are furthermore discussed. The development of these amorphous ZTO films 
with sufficient conductivity and low surface roughness has enabled their application in flexible OLEDs when applied in 
combination with metal grids9. On the other hand, the high thermal stability up to 500 °C together with an improved 
conductivity has enabled the application of a-ZTO as recombination layer in silicon/perovskite tandems solar cells.10  

 

2. EXPERIMENTAL DETAILS  
2.1. Combinatorial sputtering from ZnO and SnO2 targets. 

For the co-sputtering deposition of the films, a ZnO and a SnO2 4-inch diameter targets were used. The targets were 
facing each other and simultaneously ignited using RF magnetron sputtering in an Oerlikon Clusterline System. The RF 
power density was 5.1 W/cm2 for the SnO2 target and 1.9 W/cm2 for the ZnO:Al target. The co-sputtering deposition was 
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Table 2. Electrical properties of the a-ZTO films as-deposited and after post-thermal treatments in oxygen and hydrogen-rich 
atmospheres. 

a-ZTO 
treatment 

Phase Ne (1019 cm-3) μ (cm2/Vs) σ (Ω-1cm-1) 

ZTO 
As-deposited 

Dense amorphous 
structure9 

7 21 245 

Post-annealing  Air H2 Air H2 Air H2 
ZTO 
Annealed at 150 °C 
30 min 

Amorphous13,14 10 8.5 23 24 368 327 

ZTO 
Annealed at 500 °C 
30 min 

Amorphous13,14 
 
 

6 16 35 24 336 614 

 

 

3.3. Optical properties  

The absorptance of the films, calculated from transmittance (TT) and reflectance (TR) measurements (A = 100-TT-TR) 
are presented in Fig. 2. As observed in the figure, the evolution of the optical properties to lower absorptance values in 
the visible range goes in-line with the improvement of the film quality, and with it, the improvement of the electrical 
properties as shown in Table 2. The only exception is the film annealed at 500 °C in a H2 atmosphere, which presents the 
highest conductivity with a trade-off on the optical properties. The highest conductivity of the H2-annealed sample is due 
to the strong increase in carrier concentration, possibly due to hydrogen doping in the films. Increasing the doping 
causes the increase in absorptance, both in the visible and in the NIR (free carrier absorption). In the case of air-annealed 
samples at high temperatures, opposite to the H2 annealing, we see a strong increase in mobility, but lower carrier 
concentration. This can be interpreted by oxidation of the films, reducing the density of oxygen vacancies and with it 
also a clear reduction of the defect density in the films.14 These defects can be due to disorder, loose metal bonds, and/or 
metal-metal pairs or nanoclustering that create levels below the band gap generating absorption levels. This has been 
described theoretically by Korner et al in ref.15. In fact, by annealing the films at high temperatures (i.e. 500 °C) in 
oxygen-rich atmosphere (air in the present case), we see that the subgap absorptance at 500 nm is clearly reduced. A 
complete study of the link between subgap states and optoelectronic properties is found in ref.14. 
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Figure 2. Absorptance spectra of a-ZTO layers: from co-sputtered, to the optimized sputtered layers from a 
single target, and post-annealed at 500 °C in air and H2 atmospheres. (WP= working pressure) 
 

 

4. CONCLUSION 
We have developed a sputtered amorphous Zn-Sn-O TCO deposited at low temperature with electron mobilities of up to 
21 cm2/Vs and a conductivity of 245 Ω-1cm-1. These films were obtained by optimizing the microstructure of Zn-Sn-O, 
i.e. by forming dense, void-free layers. Post-deposition thermal treatments enable a further improvement of the 
conductivity of the films. Hydrogen annealing at high temperatures results in a strong increase in carrier density up to 
1.6E20 cm-3 due to hydrogen doping. The hydrogen doping allowed reaching the highest conductivity of 614 Ω-1cm-1, 
but with a trade-off on the optical properties. On the other hand, annealing in oxygen-rich atmospheres at 500 °C enables 
a pronounced increase in mobility of up to 35 cm2/Vs, whilst keeping a carrier density of 6E19 cm-3. Considering that the 
film is amorphous even after annealing at 500 °C, the obtained mobility of 35 cm2/Vs is remarkable. It is proposed that 
the increased mobility together with the excellent optical properties from the visible to the near infrared both result from 
the improvement in the film quality as well as the reduction of oxygen vacancies originally source of sub-band gap 
absorption centers.      
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