Computational Analysis of Urban Places Using Mobile Crowdsensing

In cities, urban places provide a socio-cultural habitat for people to counterbalance the daily grind of urban life, an environment away from home and work. Places provide an environment for people to communicate, share perspectives, and in the process form new social connections. Due to the active role of places to the social fabric of city life, it is important to understand how people perceive and experience places. One fundamental construct that relates place and experience is ambiance, i.e., the impressions we ubiquitously form when we go out. Young people are key actors of urban life, specially at night, and as such play an equal role in co-creating and appropriating the urban space. Understanding how places and their youth inhabitants interact at night is a relevant urban issue. Until recently, our ability to assess the visual and perceptual qualities of urban spaces and to study the dynamics surrounding youth experiences in those spaces have been limited partly due to the lack of quantitative data. However, the growth of computational methods and tools including sensor-rich mobile devices, social multimedia platforms, and crowdsourcing tools have opened ways to measure urban perception at scale, and to deepen our understanding of nightlife as experienced by young people. In this thesis, as a first contribution, we present the design, implementation and computational analysis of four mobile crowdsensing studies involving youth populations from various countries to understand and infer phenomena related to urban places and people. We gathered a variety of explicit and implicit crowdsourced data including mobile sensor data and logs, survey responses, and multimedia content (images and videos) from hundreds of crowdworkers and thousands of users of mobile social networks. Second, we showed how crowdsensed images can be used for the computational characterization and analysis of urban perception in indoor and outdoor places. For both place types, urban perception impressions were elicited for several physical and psychological constructs using online crowdsourcing. Using low-level and deep learning features extracted from images, we automatically inferred crowdsourced judgments of indoor ambiance with a maximum R2 of 0.53 and outdoor perception with a maximum R2 of 0.49. Third, we demonstrated the feasibility to collect rich contextual data to study the physical mobility, activities, ambiance context, and social patterns of youth nightlife behavior. Fourth, using supervised machine learning techniques, we automatically classified drinking behavior of young people in an urban, real nightlife setting. Using features extracted from mobile sensor data and application logs, we obtained an overall accuracy of 76.7%. While this thesis contributes towards understanding urban perception and youth nightlife patterns in specific contexts, our research also contributes towards the computational understanding of urban places at scale with high spatial and temporal resolution, using a combination of mobile crowdsensing, social media, machine learning, multimedia analysis, and online crowdsourcing.

Related material