Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier
 
research article

Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier

Slomski, Bartosz
•
Landolt, Gabriel
•
Bihlmayer, Gustav
Show more
2013
Scientific Reports

Spin-orbit interaction (SOI) in low-dimensional systems results in the fascinating property of spin-momentum locking. In a Rashba system the inversion symmetry normal to the plane of a two-dimensional (2D) electron gas is broken, generating a Fermi surface spin texture reminiscent of spin vortices of different radii which can be exploited in spin-based devices. Crucial for any application is the possibility to tune the momentum splitting through an external parameter. Here we show that in Pb quantum well states (QWS) the Rashba splitting depends on the Si substrate doping. Our results imply a doping dependence of the Schottky barrier which shifts the Si valence band relative to the QWS. A similar shift can be achieved by an external gate voltage or ultra-short laser pulses, opening up the possibility of terahertz spintronics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

articles-srep01963.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.15 MB

Format

Adobe PDF

Checksum (MD5)

f00b00e7ee7f85f5a290c4e8b5ddddde

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés