Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control

A computational method is presented to determine the tokamak actuator time evolution (trajectories) required to optimally reach a given point in the tokamak operating space while satisfying a set of constraints. Usually, trajectories of plasma auxiliary heating, current drive and plasma current required during the transient phases of a tokamak shot to reach a desired shape of the plasma temperature and safety factor (q) profiles are determined by trial-and-error by physics operators. In this paper, these trajectories are calculated by solving a non-linear, constrained, finite-time optimal control problem.


Published in:
Plasma Physics And Controlled Fusion, 54, 025002
Year:
2012
Keywords:
Laboratories:
SPC
CRPP




 Record created 2012-03-22, last modified 2018-01-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)