Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control
 
research article

Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control

Felici, F.
•
Sauter, O.
2012
Plasma Physics and Controlled Fusion

A computational method is presented to determine the tokamak actuator time evolution (trajectories) required to optimally reach a given point in the tokamak operating space while satisfying a set of constraints. Usually, trajectories of plasma auxiliary heating, current drive and plasma current required during the transient phases of a tokamak shot to reach a desired shape of the plasma temperature and safety factor (q) profiles are determined by trial-and-error by physics operators. In this paper, these trajectories are calculated by solving a non-linear, constrained, finite-time optimal control problem.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés