Abstract

A hyperelastic pressure transducer is fabricated by embedding silicone rubber with microchannels of conductive liquid eutectic gallium-indium. Pressing the surface of the elastomer with pressures in the range of 0-100 kPa will deform the cross-section of underlying channels and change their electric resistance by as much as 50%. Microchannels with dimensions as small as 25 mu m are obtained with a maskless, soft lithography process that utilizes direct laser exposure. Change in electrical resistance is measured as a function of the magnitude and area of the surface pressure as well as the cross-sectional geometry, depth and relative lateral position of the embedded channel. These experimentally measured values closely match closed-form theoretical predictions derived from plane strain elasticity and contact mechanics.

Details

Actions