A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation

A new code is presented here, named Gyrokinetic SEmi-LAgragian (GYSELA) code, which solves 4D drift-kinetic equations for ion temperature gradient driven turbulence in a cylinder (r, theta, z). The code validation is performed with the slab ITG mode that only depends on the parallel velocity. This code uses a semi-Lagrangian numerical scheme, which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been validated in the linear and non-linear regimes. The GYSELA code is found to be stable over long simulation times (more than 20 times the linear growth rate of the most unstable mode), including for cases with a high resolution mesh (delta r similar to 0.1 Larmor radius, delta z similar to 10 Larmor radius). (c) 2006 Elsevier Inc. All rights reserved.


Publié dans:
Journal of Computational Physics, 217, 2, 395-423
Année
2006
Publisher:
Elsevier
ISSN:
0021-9991
Autres identifiants:
Laboratoires:
SPC
CRPP




 Notice créée le 2008-04-16, modifiée le 2019-12-05

n/a:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)