Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation
 
research article

A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation

Grandgirard, V.  
•
Brunetti, M.  
•
Bertrand, P.
Show more
2006
Journal of Computational Physics

A new code is presented here, named Gyrokinetic SEmi-LAgragian (GYSELA) code, which solves 4D drift-kinetic equations for ion temperature gradient driven turbulence in a cylinder (r, theta, z). The code validation is performed with the slab ITG mode that only depends on the parallel velocity. This code uses a semi-Lagrangian numerical scheme, which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been validated in the linear and non-linear regimes. The GYSELA code is found to be stable over long simulation times (more than 20 times the linear growth rate of the most unstable mode), including for cases with a high resolution mesh (delta r similar to 0.1 Larmor radius, delta z similar to 10 Larmor radius). (c) 2006 Elsevier Inc. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Gysela4D_JCP2006.pdf

Access type

openaccess

Size

2.1 MB

Format

Adobe PDF

Checksum (MD5)

28ac4eb3120d25c753efcae9bf6cbf69

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés