Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction
 
conference paper not in proceedings

UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction

Feng, Lan  
•
Bahari, Mohammadhossein  
•
Zablocki, Éloi
Show more
August 7, 2024
European Conference on Computer Vision (ECCV 2024)

Vehicle trajectory prediction has increasingly relied on datadriven solutions, but their ability to scale to different data domains and the impact of larger dataset sizes on their generalization remain underexplored. While these questions can be studied by employing multiple datasets, it is challenging due to several discrepancies, e.g., in data formats, map resolution, and semantic annotation types. To address these challenges, we introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria, presenting new opportunities for the vehicle trajectory prediction field. In particular, using UniTraj, we conduct extensive experiments and find that model performance significantly drops when transferred to other datasets. However, enlarging data size and diversity can substantially improve performance, leading to a new state-of-the-art result for the nuScenes dataset. We provide insights into dataset characteristics to explain these findings. The code can be found here: https://github.com/vita-epfl/UniTraj.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2403.15098v3.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

N/A

Size

1.38 MB

Format

Adobe PDF

Checksum (MD5)

0a9922539c42a3d3c7b07f15cb3bd91b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés