Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Disorder-Driven Spin-Orbital Liquid Behavior in the Ba3XSb2O9 Materials
 
research article

Disorder-Driven Spin-Orbital Liquid Behavior in the Ba3XSb2O9 Materials

Smerald, Andrew  
•
Mila, Frederic  
2015
Physical Review Letters

Recent experiments on the Ba3XSb2O9 family have revealed materials that potentially realize spin-and spin-orbital liquid physics. However, the lattice structure of these materials is complicated due to the presence of charged X2+-Sb5+ dumbbells, with two possible orientations. To model the lattice structure, we consider a frustrated model of charged dumbbells on the triangular lattice, with long-range Coulomb interactions. We study this model using Monte Carlo simulation, and find a freezing temperature, T-frz, at which the simulated structure factor matches well to low-temperature x-ray diffraction data for Ba3CuSb2O9. At T = T-frz we find a complicated "branching" structure of superexchange-linked X2+ clusters, which form a fractal pattern with fractal dimension d(f) = 1.90. We show that this gives a natural explanation for the presence of orphan spins. Finally we provide a plausible mechanism by which such dumbbell disorder can promote a spin-orbital resonant state with delocalized orphan spins.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevLett.115.147202.pdf

Access type

openaccess

Size

1.46 MB

Format

Adobe PDF

Checksum (MD5)

32042b0c5f97aabff1311038a60b40af

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés