Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films
 
research article

Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

Morales-Masis, Monica
•
Ding, Laura  
•
Dauzou, Fabien
Show more
2014
APL Materials

Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H-2)-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H-2-plasma treatment performed at a substrate temperature of 50 degrees C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_748.pdf

Access type

openaccess

Size

1.22 MB

Format

Adobe PDF

Checksum (MD5)

2672eb387f932dbea3e047c07bcb469a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés