Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Real-time Nonlinear MPC Strategy with Full Vehicle Validation for Autonomous Driving
 
working paper

Real-time Nonlinear MPC Strategy with Full Vehicle Validation for Autonomous Driving

Allamaa, Jean Pierre  
•
Listov, Petr  
•
Van der Auweraer, Herman
Show more
September 28, 2021

In this paper, we present the development and deployment of an embedded optimal control strategy for autonomous driving applications on a Ford Focus road vehicle. Non-linear model predictive control (NMPC) is designed and deployed on a system with hard real-time constraints. We show the properties of sequential quadratic programming (SQP) optimization solvers that are suitable for driving tasks. Importantly, the designed algorithms are validated based on a standard automotive development cycle: model-in-the-loop (MiL) with high fidelity vehicle dynamics, hardware-in-theloop (HiL) with vehicle actuation and embedded platform, and vehicle-hardware-in-the-loop (VeHiL) testing using a full vehicle. The autonomous driving environment contains both virtual simulation and physical proving ground tracks. Throughout the process, NMPC algorithms and optimal control problem (OCP) formulation are fine-tuned using a deployable C code via code generation compatible with the target embedded toolchains. Finally, the developed systems are applied to autonomous collision avoidance, trajectory tracking and lane change at high speed on city/highway and low speed at a parking environment.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

RealTimeNMPC.pdf

Type

Preprint

Version

Access type

openaccess

License Condition

Copyright

Size

3.69 MB

Format

Adobe PDF

Checksum (MD5)

e0878b4220f8f2cd0e916bb9a6f51c58

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés