Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. CFD simulation tool for solid oxide fuel cells
 
research article

CFD simulation tool for solid oxide fuel cells

Autissier, Nordahl  
•
Favrat, Daniel  
•
Larrain, Diego  
Show more
2004
Journal of Power Sources

A 3D simulation tool for solid oxide fuel cells is presented. The aim of this work is to predict current density, flow, temperature and concentration fields in order to compare and optimize repeat element geometry for a whole stack. A commercial CFD tool was used, solving mass, momentum and energy equations; whereas chemical kinetic equations are computed from external sub-routines. A steady-state case is presented, fed with hydrogen. The flow is laminar for both air and fuel. Radiative heat transfer is taken into account between inner surfaces. On boundaries, convective and radiative heat transfers are assumed at external surfaces between repeat element and oven. Due to the large range of dimensions (cells: 300 mum thick, gas channels: 1 mm height, whole cell: 80 mm x 80 mm) a fine mesh was needed. Data for conductivities and kinetics were estimated from experiments performed in- house. Simulation results are presented and compared to real repeat element test measurements for the current-potential characteristics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Autissier_JPS2003.pdf

Access type

restricted

Size

200.79 KB

Format

Adobe PDF

Checksum (MD5)

d6b57684fbd8f3e7a87a83c76497f0d5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés