Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Can we trust explainable artificial intelligence in wind power forecasting?
 
research article

Can we trust explainable artificial intelligence in wind power forecasting?

Liao, Wenlong  
•
Fang, Jiannong  
•
Ye, Lin
Show more
August 15, 2024
Applied Energy

Advanced artificial intelligence (AI) models typically achieve high accuracy in wind power forecasting, but their internal mechanisms lack interpretability, which undermines user confidence in forecast value and strategy execution. To this end, this paper aims to investigate the interpretability of AI models, which is crucial but usually overlooked in wind power forecasting. Specifically, four model-agnostic explainable artificial intelligence (XAI) techniques (i.e., Shapley additive explanations, permutation feature importance, partial dependence plot, and local interpretable model-agnostic explanations) are tailored to provide global and instance interpretability for AI models in wind power forecasting. Then, several metrics are proposed to evaluate the trustworthiness of interpretations provided by XAI techniques. Simulation results demonstrate that the proposed XAI techniques can not only identify important features from wind power datasets, but also enable the understanding of the contribution of each feature to the forecast power output for a specific sample. Furthermore, the proposed evaluation metrics aid users in comprehensively assessing the trustworthiness of XAI techniques in wind power forecasting, enabling them to judiciously select suitable XAI techniques for their AI models.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0306261924016568-main.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

4.72 MB

Format

Adobe PDF

Checksum (MD5)

2cfcb76ebf772433e3a2310e9376922d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés