Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Progress in Hyperpolarized Ultrafast 2D NMR Spectroscopy
 
research article

Progress in Hyperpolarized Ultrafast 2D NMR Spectroscopy

Mishkovsky, Mor  
•
Frydman, Lucio
2008
ChemPhysChem

An important development in the field of NMR spectroscopy has been the advent of hyperpolarization approaches, capable of yielding nuclear spin states whose value exceeds by orders-of-magnitude what even the highest-field spectrometers can afford under Boltzmann equilibrium. Included among these methods is an ex situ dynamic nuclear polarization (DNP) approach, which yields liquid-phase samples possessing spin polarizations of up to 50%. Although capable of providing an NMR sensitivity equivalent to the averaging of about 1 000 000 scans, this methodology is constrained to extract its "superspectrum" within a single-or at most a few-transients. This makes it a poor starting point for conventional 2D NMR acquisition experiments, which require a large number of scans that are identical to one another except for the increment of a certain t(1) delay. It has been recently suggested that by merging this ex situ DNP approach with spatially encoded "ultrafast" methods, a suitable starting point could arise for the acquisition of 2D spectra on hyperpolarized liquids. Herein, we describe the experimental principles, potential features, and current limitations of such integration between the two methodologies. For a variety of small molecules, these new hyperpolarized ultrafast experiments con, for equivalent overall durations, provide heteronuclear correlation spectra at significantly lower concentrations than those currently achievable by conventional 2D NMR acquisitions. A variety of challenges still remain to be solved before bringing the full potential of this new integrated 2D NMR approach to fruition; these outstanding issues are discussed.

  • Details
  • Metrics
Type
research article
DOI
10.1002/cphc.200800461
Author(s)
Mishkovsky, Mor  
Frydman, Lucio
Date Issued

2008

Published in
ChemPhysChem
Volume

9

Issue

16

Start page

2340

End page

2348

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
IPSB  
Available on Infoscience
September 26, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/94944
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés