Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Progressive failure process of adhesively bonded joints composed of pultruded GFRP
 
research article

Progressive failure process of adhesively bonded joints composed of pultruded GFRP

Zhang, Y
•
Keller, T  
2008
Composites Science and Technology

Adhesively bonded joints are being used increasingly in civil engineering structures, especially for joints comprising pultruded glass fiber reinforced polymer (GFRP) laminates. The layered material architecture, however, leads to a complex delamination failure within the pultruded material, thus necessitating understanding of the progressive failure mechanism of such joints under axial tensile loading. In this work, adhesively bonded joints composed of pultruded GFRP laminates, including double and stepped lap joints, were experimentally investigated. The static strengths of joints were obtained and the failure mechanism was understood. Crack propagation and back face strain gages were successfully employed to identify crack initiation and describe crack propagation, even though the failure mechanism was always sudden and brittle. The dominant failure mode for both types of joints was a fiber- tear- off failure that occurred in the mat layers of the GFRP laminates. The critical strain energy release rate was calculated. Different values were obtained for the two joint types due to different combinations of fracture modes.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.compscitech.2007.06.011
Web of Science ID

WOS:000252693000015

Author(s)
Zhang, Y
Keller, T  
Date Issued

2008

Published in
Composites Science and Technology
Volume

68

Issue

2

Start page

461

End page

470

Subjects

Adhesive joints

•

Strength

•

Crack

•

Pultrusion

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CCLAB  
Available on Infoscience
June 22, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/9290
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés