Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark
 
research article

Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark

Nieto-Juarez, Jessica I.  
•
Kohn, Tamar  
2013
Photochemical and Photobiological Sciences

Advanced oxidation processes (AOPs) have emerged as a promising alternative to conventional disinfection methods to control microbial water quality, yet little is known about the fate of viruses in such processes. In this study, we investigated the fate of MS2 coliphage in AOPs that rely on heterogeneous Fenton-like processes catalyzed by iron(hydr-)oxide particles. Both removal of viruses from solution via adsorption onto particles, as well as true inactivation were considered. Virus fate was studied in batch reactors at circumneutral pH, containing 200 mg L-1 of four different commercial iron(hydr-)oxide particles of similar mesh size: hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and amorphous iron(III) hydroxide (Fe(OH)3). The effect of adsorption and sunlight exposure on the survival of MS2 was considered. On a mass basis, all particles exhibited a similar virus adsorption capacity. Normalized by surface area, the adsorption capacity of magnetite (Fe3O4) was one order of magnitude greater than that of to the other particles. Adsorption to three of the particles investigated (α-FeOOH, Fe3O4, Fe(OH)3) caused virus inactivation of 12%, 41%, and 22%, respectively. Exposure of particle-adsorbed viruses to sunlight and H2O2 resulted in efficient additional inactivation, whereas inactivation was negligible for suspended viruses. The observed first-order inactivation rate constants were, 6.6x10-2, 8.7x10-2, 0.55 and 1.5 min-1 for α-FeOOH, α-Fe2O3, Fe3O4 and Fe(OH)3 respectively. In the absence of sunlight or H2O2, no inactivation was observed, except for Fe3O4, which caused virus inactivation via a dark Fenton-like process. Overall our results demonstrate that heterogeneous Fenton-like processes can both physically remove viruses from water as well as inactivate them via a particle-mediated (photo-)Fenton-like process.

  • Details
  • Metrics
Type
research article
DOI
10.1039/C3PP25314G
Web of Science ID

WOS:000323174000004

Author(s)
Nieto-Juarez, Jessica I.  
Kohn, Tamar  
Date Issued

2013

Publisher

Royal Society of Chemistry

Published in
Photochemical and Photobiological Sciences
Volume

12

Issue

9

Start page

1596

End page

1605

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LEV  
Available on Infoscience
April 22, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/91685
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés