Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Information processing with frequency-dependent synaptic connections
 
research article

Information processing with frequency-dependent synaptic connections

Markram, H.  
•
Gupta, A.  
•
Uziel, A.
Show more
1998
Neurobiology of learning and memory

The efficacy of synaptic transmission between two neurons changes as a function of the history of previous activations of the synaptic connection. This history dependence can be characterized by examining the dependence of transmission on the frequency of stimulation. In this framework synaptic plasticity can also be examined in terms of changes in the frequency dependence of transmission and not merely in terms of synaptic strength which constitutes only a linear scaling mechanism. Recent work shows that the frequency dependence of transmission determines the content of information transmitted between neurons and that synaptic modifications can change the content of information transmitted. Multipatch-clamp recordings revealed that the frequency dependence of transmission is potentially unique for each synaptic connection made by a single axon and that the class of pre-postsynaptic neuron determines the class of frequency dependence (activity independent), while the unique activity relationship between any two neurons could determine the precise values of the parameters within a specific class (activity dependent). The content of information transmitted between neurons is also formalized to provide synaptic transfer functions which can be used to determine the role of the synaptic connection within a network of neurons. It is proposed that deriving synaptic transfer functions is crucial in order to understand the link between synaptic transmission and information processing within networks of neurons and to understand the link between synaptic plasticity and learning and memory.

  • Details
  • Metrics
Type
research article
DOI
10.1006/nlme.1998.3841
PubMed ID

9753590

Author(s)
Markram, H.  
Gupta, A.  
Uziel, A.
Wang, Y.
Tsodyks, M.
Date Issued

1998

Published in
Neurobiology of learning and memory
Volume

70

Issue

1-2

Start page

101

End page

12

Subjects

Neuronal Plasticity

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LNMC  
Available on Infoscience
January 28, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/88291
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés