Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Improved lipid profiling of the mouse liver by 1H-NMR spectroscopy at 14.1T in vivo
 
conference paper

Improved lipid profiling of the mouse liver by 1H-NMR spectroscopy at 14.1T in vivo

Soares, Ana Francisca  
•
Lei, Hongxia  
•
Gruetter, Rolf  
2012
Magnetic Resonance Materials in Physics, Biology and Medicine
29th Annual Scientific Meeting of the European Society for Magnetic Resonace in Medicine and Biology

Purpose/Introduction: Whole-body metabolic deregulation features changes in hepatic lipid dynamics. In vivo 1H-MRS allows to noninvasively assess hepatic lipid content (HLC) and composition both in humans [1] and rodents [2]. Transgenic mice provide insight into disease mechanisms but, comparing with bigger subjects, reduced sample size and consequently increased acquisition time to compensate for sensitivity issues, remain limiting factors. We aimed to improve sensitivity and spectral resolution of the 1H-NMR spectrum of the mouse liver employing high magnetic field strength, i.e. 14.1T. Subjects and Methods: Seven C57BL/6J mice (13-20 weeks) under isofluorane anesthesia were scanned in the supine position with a 1H quadrature surface coil over the abdomen. NMR measurements were performed in a horizontal bore 14.1T-26 cm magnet. Multi-slice gradient echo images were acquired in the coronal, sagittal and axial orientations for anatomical identification of the liver. Localized, respiration-gated 1H-NMR spectra were acquired from a 9-15 μl voxel with STEAM (TM, 20 ms; TR, 6.5 s; TE, 8-35 ms; 18-25 scans). Spectra were corrected for B0 drift and phase, summed and analyzed with LCModel. T2 correction was done by mono-exponential fit of peak areas as a function of TE. HLC was estimated as the T2-corrected area of 1.3 ppm-lipid resonance relative to that of the water plus 1.3 ppm-lipid. The quantification method was validated in water-in-oil phantoms (Figure 1). Water suppression was achieved with a Gaussian-shaped pulse during TM period (84 scans). Results: Respiration-gated acquisition yielded well-defined anatomical images of the mouse liver structure (Figure 2) and very stable inter-scans signal intensity (Figure 3). STEAM-determined water T2 was 8.4 ± 0.3 ms, shorter but still comparable with previous reports of ~11 ms with PRESS at 9.4T [2] and 11.7T [3]. HLC was 1.1 ± 0.1% in young adult mice. Fatty acyl resonances were well resolved in water-suppressed spectra (Figure 4) and choline-containing compounds could be identified. Discussion/Conclusion: We report highly stable localized 1H-MRS of the mouse liver at high field. Enhanced sensitivity allowed for accurate determination of HCL from small voxels confined to hepatic tissue, in short experiment series (~10 min). The saturation profile of the fatty-acyl chains can be determined even for healthy mice with low HLC. This approach opens the possibility to study mice models with very low HLC. References: [1] Hamilton G, 2011, NMR Biomed 24, 784–790. [2] Ye Q, 2012, Mang Reson Mater Phy, in press. [3] Tang H, 2007, Proc Intl Soc Mag Reson Med 15.

  • Details
  • Metrics
Type
conference paper
Author(s)
Soares, Ana Francisca  
Lei, Hongxia  
Gruetter, Rolf  
Date Issued

2012

Publisher

Springer

Published in
Magnetic Resonance Materials in Physics, Biology and Medicine
Volume

25

Issue

S1

Start page

14

End page

15

URL

Book of abstracts

https://dx.doi.org/10.1007/s10334-012-0321-z
Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CIBM  
LIFMET  
Event nameEvent placeEvent date
29th Annual Scientific Meeting of the European Society for Magnetic Resonace in Medicine and Biology

Lisboa, Portugal

October 4-6, 2012

Available on Infoscience
October 19, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/86221
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés