Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Bromate minimization during ozonation: Mechanistic considerations
 
research article

Bromate minimization during ozonation: Mechanistic considerations

von Gunten, U.  
•
Pinkernell, U.
2001
Environmental Science & Technology

Bromate formation during ozonation of bromide-containing natural waters is somewhat inversely connected to the ozone characteristics: an initial fast increase followed by a slower formation rate. During the initial phase mostly OH radical reactions contribute to bromate formation, whereas in the secondary phase both ozone and OH radicals are important. To minimize bromate formation several control options are presented: ammonia addition, pH depression, OH radical scavenging, and scavenging or reduction of hypobromous acid (HOBr) by organic compounds. Only the two first options are applicable in drinking water treatment. By both methods a similar effect of a bromate reduction of approximately 50% can be achieved. However, bromate formation during the initial phase of the ozonation cannot be influenced by either method. Ammonia (NH3) efficiently scavenges HOBr to NH2Br. However, this reaction is reversible which leads to higher required NH3 concentrations than expected. The rate constant k(NH2Br) for the hydrolysis of NH2Br by OH- to NH3 and OBr- was found to be 7.5.10(6) M-1 s(-1). pH depression shifts the HOBr/OBr- equilibrium to HOBr and also affects the ozone chemistry. The effect on ozone chemistry was found to be more important for bromate formation. For a given ozone exposure, the OH radical exposure decreases with decreasing pH. Therefore, for pH depression the overall oxidation capacity for a certain ozone exposure decreases which in turn leads to a smaller bromate formation.

  • Details
  • Metrics
Type
research article
DOI
10.1021/es001502f
Web of Science ID

WOS:000169343700019

Author(s)
von Gunten, U.  
Pinkernell, U.
Date Issued

2001

Published in
Environmental Science & Technology
Volume

35

Start page

2525

End page

2531

Subjects

Bromide-Containing Waters

•

Aqueous-Solution

•

Advanced Oxidation

•

Rate Constants

•

Ozone

•

Kinetics

•

Ratios

•

Ion

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LTQE  
Available on Infoscience
July 1, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/69255
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés