Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photodynamic therapy of early squamous cell carcinoma with tetra(m-hydroxyphenyl)chlorin: optimal drug-light interval
 
research article

Photodynamic therapy of early squamous cell carcinoma with tetra(m-hydroxyphenyl)chlorin: optimal drug-light interval

Andrejevic-Blant, S.
•
Hadjur, C.
•
Ballini, J. P.  
Show more
1997
British journal of cancer

The optimal drug-light interval for effective photodynamic therapy (PDT) of early squamous cell carcinomas was evaluated with tetra(m-hydroxyphenyl)chlorin (mTHPC) by means of two complementary modalities: irradiation tests and ex vivo fluorescence microscopy. A Syrian hamster cheek pouch tumour model was used in these experiments. Photodynamic therapy on both tumour-bearing and contralateral healthy cheek pouch mucosae was performed at 650 nm and 514 nm. Light doses of 12 J cm(-2) were delivered at a light dose rate of 150 mW cm(-2) and light doses of 80 J cm(-2) were delivered at a light dose rate of 100 mW cm(-2) respectively, at these two wavelengths, between 6 h and 12 days after the injection of 0.5 mg kg(-1) body weight mTHPC. Two histologically different types of tissue damage were observed: first, a non-selective and non-specific ischaemic vascular necrosis for the cases in which PDT took place during the first 48 h after the injection of the dye and, second, tissue-specific PDT damage, as a coagulation necrosis, when PDT took place more than 72 h after injection of the dye. The time-dependent biodistribution of mTHPC investigated by fluorescence microscopy shows a weak and non-significant difference in relative fluorescence intensities between early SCC and healthy mucosae. Up to 2 days after the injection, the drug is mainly localized in the endothelial cells of the blood vessels. After this period, the dye accumulates in the squamous epithelia with a concentration peaking at 4 days. At all time points, a weak fluorescence intensity is observed in the underlying lamina propria and striated muscle. The information obtained from these studies could well be relevant to clinical trials as it suggests that time delays between 4 and 8 days after i.v. injection should be optimal for PDT of early malignancies in hollow organs.

  • Details
  • Metrics
Type
research article
DOI
10.1038/bjc.1997.502
Web of Science ID

WOS:A1997YC36200007

Author(s)
Andrejevic-Blant, S.
Hadjur, C.
Ballini, J. P.  
Wagnières, G.  
Fontolliet, C.
van den Bergh, H.  
Monnier, P.
Date Issued

1997

Published in
British journal of cancer
Volume

76

Issue

8

Start page

1021

End page

1028

Subjects

Photochemotherapy

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPAS  
Available on Infoscience
February 1, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/63727
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés