Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the tidal prism–channel area relations
 
research article

On the tidal prism–channel area relations

D'Alpaos, Andrea
•
Lanzoni, Stefano
•
Marani, Marco
Show more
2010
Journal of Geophysical Research

We verify the broad applicability of tidal prism cross-sectional area relationships, originally proposed to relate the total water volume entering a lagoon during a characteristic tidal cycle (the tidal prism) to the size of its inlet, to arbitrary sheltered cross sections within a tidal network. We suggest, with reasonable approximation defining a statistical tendency rather than a pointwise equivalence, that the regime of tidal channels may be anywhere related to local landscape-forming prisms embedded in a characteristic spring tide oscillation. The importance of the proposed extension stems from its potential for quantitative predictions of the long-term morphological evolution of whole tidal landforms, in response to forcings affecting tidal prisms. This is the case, in particular, for alterations of relative mean sea levels possibly driven by climate change. Various 1-D and 2-D morphodynamic and hydrodynamic models are employed to evaluate peak flow rates, bottom shear stresses, and the ensuing local tidal prisms. One-dimensional morphodynamic models describing both the longitudinal and cross-sectional evolution of tidal channels are used to verify the validity of the relationship for sheltered sections. Relevant hydrodynamic features determined through accurate 2-D numerical models are compared with those obtained through time-invariant equivalents, defining a mean watershed by an energy landscape from averaged free surface gradients. Empirical evidence gathered within the lagoon of Venice (Italy) supports the proposed extension. We conclude that the geomorphic law relating tidal prisms to channel cross-sectional areas anywhere within a tidal landscape is a valuable tool for studies on long-term tidal geomorphology.

  • Details
  • Metrics
Type
research article
DOI
10.1029/2008JF001243
Web of Science ID

WOS:000273508000001

Author(s)
D'Alpaos, Andrea
Lanzoni, Stefano
Marani, Marco
Rinaldo, Andrea  
Date Issued

2010

Publisher

American Geophysical Union

Published in
Journal of Geophysical Research
Volume

115

Issue

F1

Article Number

F01003

Subjects

Salt-Marsh

•

Networks

•

Equilibrium

•

Model

•

Morphodynamics

•

Vegetation

•

Landscape

•

Evolution

•

System

•

Inlets

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ECHO  
Available on Infoscience
January 28, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/63528
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés