Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A comparative physics study of alternative long-term strategies for closure of the nuclear fuel cycle
 
research article

A comparative physics study of alternative long-term strategies for closure of the nuclear fuel cycle

Cometto, M.
•
Wydler, P.
•
Chawla, R.  
2004
Annals of Nuclear Energy

The appropriate management of radioactive waste arising from the nuclear fuel cycle is considered to be a key issue in the development of future, more sustainable nuclear energy systems. In this context, the partitioning and transmutation of actinides could play an important role through the achievement of very significant reductions in the actinide content and radiotoxicity of the high-level waste requiring geological disposal. The current paper reports on the results of a detailed physics study carried out to compare the pros and cons of alternative strategies for closure of the nuclear fuel cycle. Different long-term "steady-state" scenarios have been considered, involving the deployment, to varying degrees, of light water reactors (LWRs) and advanced fast-spectrum systems. The same nuclear data and calculation methods have been used throughout, so that a consistent and reliable comparison of the relative performance of the three basic fuel cycle options (once-through, plutonium recycle, and recycling of all actinides) has been made possible. In addition, with transmutation having been considered employing both critical and accelerator-driven fast-spectrum systems, the study has provided an evaluation of the advantages and disadvantages of these two different advanced system types

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.anucene.2003.07.001
Web of Science ID

WOS:000187917000005

Author(s)
Cometto, M.
Wydler, P.
Chawla, R.  
Date Issued

2004

Publisher

Elsevier

Published in
Annals of Nuclear Energy
Volume

31

Issue

4

Start page

413

End page

29

Subjects

fission reactor design

•

fission reactor fuel reprocessing

•

nuclear power

•

radioactive waste processing

Note

Paul Scherrer Inst., Villigen, Switzerland

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LRS  
Available on Infoscience
September 17, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/53854
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés