Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Brain-coupled Interaction for Semi-autonomous Navigation of an Assistive Robot
 
Loading...
Thumbnail Image
research article

Brain-coupled Interaction for Semi-autonomous Navigation of an Assistive Robot

Perrin, Xavier
•
Chavarriaga, Ricardo  
•
Colas, Francis
Show more
2010
Robotics and Autonomous Systems

This paper presents a novel semi-autonomous navigation strategy designed for low throughput interfaces. A mobile robot (e.g. intelligent wheelchair) proposes the most probable action, as analyzed from the environment, to a human user who can either accept or reject the proposition. In case of refusal, the robot will propose another action, until both entities agree on what needs to be done. In an unknown environment, the robotic system first extracts features so as to recognize places of interest where a human-robot interaction should take place (e.g. crossings). Based on the local topology, relevant actions are then proposed, the user providing answers by the mean of a button or a brain-computer interface (BCI). Our navigation strategy is successfully tested both in simulation and with a real robot, and a feasibility study for the use of a BCI confirms the potential of such interface.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PerrinChCoSiMi10.pdf

Access type

openaccess

Size

1.52 MB

Format

Adobe PDF

Checksum (MD5)

886502751e278cefef6e78f5491ea81c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés