Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Application of carbon nano-powders for a gas micro-preconcentrator
 
Loading...
Thumbnail Image
research article

Application of carbon nano-powders for a gas micro-preconcentrator

Pijolat, C.
•
Camara, M.
•
Courbat, J.  
Show more
2007
Sensors and Actuators B

This paper presents a feasibility study on the development of a gas preconcentrator based on micro-reactor technology on silicon. The objectives are to select a gas adsorbent material, to produce a silicon micro-reactor with an integrated heater, and finally to introduce the most suitable adsorbent into the micro-channels of the device. Preliminary results related to the characterization of a carbon adsorbent for the development of a device for the preconcentration of benzene are reported. Carbon nano-powders have been tested as adsorbent material by the determination of the breakthrough time on a dedicated test bench consisting of gas sensors and a non-selective photoionization detector (micro-PID) analyzer. A fluidic deposition process allows filling up the silicon micro-channels with the carbon nano-powder. The interest in using porous silicon to enhance the binding of the carbon nano-particles in the micro-channels was also investigated. A silicon micromachined preconcentrator filled with 0.30 mg of commercial activated charcoal powder (Aldrich, 30-100 nm) was designed and built up. The total capacity of adsorption was determined by using the breakthrough time, which is of 2.2 min under a gas flow of 100 ppm of benzene at 1 l/h. Preliminary tests of preconcentration with 100 and 1.3 ppm benzene in dry air were performed. © 2007 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.snb.2007.07.029
Author(s)
Pijolat, C.
•
Camara, M.
•
Courbat, J.  
•
Viricelle, J.-P.
•
Briand, D.  
•
de Rooij, N. F.  
Date Issued

2007

Published in
Sensors and Actuators B
Volume

127

Start page

179

End page

185

Note

414

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SAMLAB  
Available on Infoscience
May 12, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/39695
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés