Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Microscale droplet assembly enables biocompatible multifunctional modular iontronics
 
research article

Microscale droplet assembly enables biocompatible multifunctional modular iontronics

Zhang, Yujia  
•
Tan, Cheryl M. J.
•
Toepfer, Christopher N.
Show more
November 29, 2024
Science

Hydrogel iontronic devices can emulate biological functions and communicate with living matter. But the fabrication of miniature, soft iontronic devices according to modular designs has not been achieved. In this work, we report the use of surfactant-supported assembly of freestanding microscale hydrogel droplets to construct various iontronic modules, circuits, and biointerfaces. Chemical modifications of silk fibroin produced a pair of oppositely charged hydrogels. Microscale assembly of various combinations of hydrogel droplets produced iontronic diodes, npn- and pnp-type transistors, and diverse reconfigurable logic gates. Through the incorporation of poly(amino acid)s, we have demonstrated a droplet-based synthetic synapse with ionic polymer-mediated long-term plasticity. Further, our iontronic transistor can serve as a biocompatible sensor to record electrophysiological signals from sheets of human cardiomyocytes, paving a way to the building of miniature bioiontronic systems.

  • Details
  • Metrics
Type
research article
DOI
10.1126/science.adr0428
Web of Science ID

WOS:001433502400010

PubMed ID

39607936

Author(s)
Zhang, Yujia  

École Polytechnique Fédérale de Lausanne

Tan, Cheryl M. J.

University of Oxford

Toepfer, Christopher N.

University of Oxford

Lu, Xin

University of Oxford

Bayley, Hagan

University of Oxford

Date Issued

2024-11-29

Publisher

AMER ASSOC ADVANCEMENT SCIENCE

Published in
Science
Volume

386

Issue

6725

Start page

1024

End page

1030

Subjects

NEUROMORPHIC FUNCTIONS

•

IONIC CIRCUITS

•

POWER SOURCE

•

TRANSPORT

•

JUNCTION

•

GENERATION

•

MEMBRANES

•

NANOPORES

•

NETWORKS

•

DIODES

•

Science & Technology

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
BION  
FunderFunding(s)Grant NumberGrant URL

John Fell Oxford University Press Research Fund

0011303;0013171

European Research Council (ERC)

European Research Council Proof of Concept grant (BIOELECTRIC )

Show more
Available on Infoscience
March 7, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/247605
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés