ViPer: Visual Personalization of Generative Models via Individual Preference Learning
Different users find different images generated for the same prompt desirable. This gives rise to personalized image generation which involves creating images aligned with an individual’s visual preference. Current generative models are, however, tuned to produce outputs that appeal to a broad audience are unpersonalized. Using them to generate images aligned with individual users relies on iterative manual prompt engineering by the user which is inefficient and undesirable. We propose to personalize the image generation process by, first, capturing the generic preferences of the user in a one-time process by inviting them to comment on a small selection of images, explaining why they like or dislike each. Based on these comments, we infer a user’s structured liked and disliked visual attributes, i.e., their visual preference, using a large language model. These attributes are used to guide a text-to-image model toward producing images that are tuned towards the individual user’s visual preference. Through a series of user studies and large language model guided evaluations, we demonstrate that the proposed method results in generations that are well aligned with individual users’ visual preferences. Our code and model weights are open sourced at https://viper.epfl.ch.
2-s2.0-85210852848
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
2025
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 15132 LNCS
1611-3349
0302-9743
391
406
REVIEWED
EPFL
| Event name | Event acronym | Event place | Event date |
Milan, Italy | 2024-09-29 - 2024-10-04 | ||