Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ab initio molecular dynamics studies of a synthetic biomimetic model of galactose oxidase
 
research article

Ab initio molecular dynamics studies of a synthetic biomimetic model of galactose oxidase

Rothlisberger, Ursula  
•
Carloni, Paolo
1999
International Journal of Quantum Chemistry

Very recently, highly efficient biomimetic models of the mononuclear copper enzyme galactose oxidase were synthesized which are able to reproduce the structural, spectroscopic, and functional properties of the native system exceptionally well. We have characterized an inactive and an active form of one of these biomimetic compds. using unrestricted dynamical d. functional calcns. The peculiar nonsquare planar O2N2-coordination geometry of the copper ion in the catalytically inactive (EPR-active) form induces a complex energy-level diagram that cannot be related to crystal-field models: The highest occupied orbitals are located on the p-system of the arom. ligands and are essentially spin-paired while the unpaired electron is localized mainly in a lower-lying dx2-y2 orbital of the copper. Using ab initio mol. dynamics simulations, we detd. for the first time the structure of the active form complexed with a substrate analog. Our calcns. reveal that upon substrate binding one of the phenolate ligands is pushed away from the copper center into an axial position and the electronic structure rearranges to an unusual antiferromagnetic diradical state. As in the inactive form, the unpaired a-spin d. is located in the copper dx2-y2 orbital. The unpaired b-spin d., instead, is localized on the axial ligand in agreement with the ligand-based radical mechanism that has been proposed for galactose oxidase. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1002/(SICI)1097-461X(1999)73:2<209::AID-QUA14>3.0.CO;2-B
Author(s)
Rothlisberger, Ursula  
Carloni, Paolo
Date Issued

1999

Published in
International Journal of Quantum Chemistry
Volume

73

Issue

2

Start page

209

End page

218

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCBC  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226149
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés