Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. MD modeling of defects in Fe and their interactions
 
research article

MD modeling of defects in Fe and their interactions

Marian, J.
•
Wirth, B. D.
•
Schaeublin, R.  
Show more
2003
Journal of Nuclear Materials

Ferritic/martensitic steels considered as candidate first-wall materials for fusion reactors experience significant radiation hardening at temperatures below similar to400 degreesC. A number of experimental studies in ferritic alloys, performed at 1/2(111) and (100) in the higher temperatures, have shown the existence of large interstitial loops with Burgers vector 2 bulk, which may provide a significant contribution to the hardening caused during irradiation at lower temperatures. Hardening arises from a high number density of loops, voids and small precipitates, which pin system dislocations, impeding their free glide. In this work, we review the nature of the different interstitial dislocation loops observed in alpha-Fe and ferritic materials, assess the effect of substitutional impurities on migrating 1/2 (111) clusters, and apply atomistic modeling to investigate the mechanisms of formation and growth of (100) loops from smaller cascade-produced 1/2 (111) clusters. The proposed mechanism reconciles experimental observations with continuum elasticity theory and recent MD modeling of defect production in displacement cascades. In addition, the interaction of screw dislocations, known to control the low-temperature plastic response of b.c.c. materials to external stress, with (10 0) dislocation loops is investigated with MD, where the main physical mechanisms are identified, cutting angles estimated and a first-order estimation of the induced hardening is provided. (C) 2003 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.jnucmat.2003.08.037
Web of Science ID

WOS:000187074300007

Author(s)
Marian, J.
Wirth, B. D.
Schaeublin, R.  
Odette, G. R.
Perlado, J. M.
Date Issued

2003

Published in
Journal of Nuclear Materials
Volume

323

Issue

2-3

Start page

181

End page

191

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/21950
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés