Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fast end-to-end learning on protein surfaces
 
conference paper

Fast end-to-end learning on protein surfaces

Sverrisson, Freyr  
•
Feydy, Jean
•
Correia, Bruno E.  
Show more
January 1, 2021
2021 Ieee/Cvf Conference On Computer Vision And Pattern Recognition, Cvpr 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Proteins' biological functions are defined by the geometric and chemical structure of their 3D molecular surfaces. Recent works have shown that geometric deep learning can be used on mesh-based representations of proteins to identify potential functional sites, such as binding targets for potential drugs. Unfortunately though, the use of meshes as the underlying representation for protein structure has multiple drawbacks including the need to pre-compute the input features and mesh connectivities. This becomes a bottle-neck for many important tasks in protein science.

In this paper, we present a new framework for deep learning on protein structures that addresses these limitations. Among the key advantages of our method are the computation and sampling of the molecular surface on-the-fly from the underlying atomic point cloud and a novel efficient geometric convolutional layer. As a result, we are able to process large collections of proteins in an end-to-end fashion, taking as the sole input the raw 3D coordinates and chemical types of their atoms, eliminating the need for any hand-crafted pre-computed features.

To showcase the performance of our approach, we test it on two tasks in the field of protein structural bioinformatics: the identification of interaction sites and the prediction of protein-protein interactions. On both tasks, we achieve state-of-the-art performance with much faster run times and fewer parameters than previous models. These results will considerably ease the deployment of deep learning methods in protein science and open the door for end-to-end differentiable approaches in protein modeling tasks such as function prediction and design.

  • Details
  • Metrics
Type
conference paper
DOI
10.1109/CVPR46437.2021.01502
Web of Science ID

WOS:000742075005048

Author(s)
Sverrisson, Freyr  
Feydy, Jean
Correia, Bruno E.  
Bronstein, Michael M.
Date Issued

2021-01-01

Publisher

IEEE COMPUTER SOC

Publisher place

Los Alamitos

Published in
2021 Ieee/Cvf Conference On Computer Vision And Pattern Recognition, Cvpr 2021
ISBN of the book

978-1-6654-4509-2

Series title/Series vol.

IEEE Conference on Computer Vision and Pattern Recognition

Start page

15267

End page

15276

Subjects

Computer Science, Artificial Intelligence

•

Imaging Science & Photographic Technology

•

Computer Science

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPDI  
Event nameEvent placeEvent date
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

ELECTR NETWORK

Jun 19-25, 2021

Available on Infoscience
January 31, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/184964
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés