System-level, Input-output and New Parameterizations of Stabilizing Controllers, and Their Numerical Computation
It is known that the set of internally stabilizing controller $\mathcal{C}{\text{stab}}$ is non-convex, but it admits convex characterizations using certain closed-loop maps: a classical result is the {Youla parameterization}, and two recent notions are the {system-level parameterization} (SLP) and the {input-output parameterization} (IOP). In this paper, we address the existence of new convex parameterizations and discuss potential tradeoffs of each parametrization in different scenarios. Our main contributions are: 1) We first reveal that only four groups of stable closed-loop transfer matrices are equivalent to internal stability: one of them is used in the SLP, another one is used in the IOP, and the other two are new, leading to two new convex parameterizations of $\mathcal{C}{\text{stab}}$. 2) We then investigate the properties of these parameterizations after imposing the finite impulse response (FIR) approximation, revealing that the IOP has the best ability of approximating $\mathcal{C}_{\text{stab}}$ given FIR constraints. 3) These four parameterizations require no \emph{a priori} doubly-coprime factorization of the plant, but impose a set of equality constraints. However, these equality constraints will never be satisfied exactly in numerical computation. We prove that the IOP is numerically robust for open-loop stable plants, in the sense that small mismatches in the equality constraints do not compromise the closed-loop stability. The SLP is known to enjoy numerical robustness in the state feedback case; here, we show that numerical robustness of the four-block SLP controller requires case-by-case analysis in the general output feedback case.
2020-05-28
NON-REVIEWED