Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison
 
Loading...
Thumbnail Image
research article

Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

Zhang, Y.
•
Zhang, X.
•
Wang, K.
Show more
2015
Journal of Geophysical Research

Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107-113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation, shortwave cloud forcing, and precipitation. The model evaluation identifies several areas of improvements including emissions and their vertical allocation as well as model formulations such as aerosol formation, cloud droplet nucleation, and ice nucleation. © 2015. American Geophysical Union. All Rights Reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1002/2014JD023051
Author(s)
Zhang, Y.
•
Zhang, X.
•
Wang, K.
•
He, J.
•
Leung, L. R.
•
Fan, J.
•
Nenes, Athanasios  
Date Issued

2015

Publisher

Wiley-Blackwell

Published in
Journal of Geophysical Research
Volume

120

Start page

6952

End page

6979

Subjects

aerosol

•

air quality

•

atmospheric forcing

•

atmospheric modeling

•

cloud condensation nucleus

•

cloud microphysics

•

concentration (composition)

•

convective cloud

•

droplet

•

electromagnetic radiation

•

environmental monitoring

•

optical depth

•

oxide

•

parameterization

•

precipitation (climatology)

•

satellite data

•

Far East

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAPI  
Available on Infoscience
October 15, 2018
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/148935
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés