Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Model predictive controllers for reduction of mechanical fatigue in wind farms
 
research report

Model predictive controllers for reduction of mechanical fatigue in wind farms

Riverso, S.
•
Mancini, S.
•
Sarzo, F.
Show more
2014

We consider the problem of dispatching WindFarm (WF) power demand to individual Wind Turbines (WT) with the goal of minimizing mechanical stresses. We assume wind is strong enough to let each WTs to produce the required power and propose different closed-loop Model Predictive Control (MPC) dispatching algorithms. Similarly to existing approaches based on MPC, our methods do not require changes in WT hardware but only software changes in the SCADA system of the WF. However, differently from previous MPC schemes, we augment the model of a WT with an ARMA predictor of the wind turbulence, which reduces uncertainty in wind predictions over the MPC control horizon. This allows us to develop both stochastic and deterministic MPC algorithms. In order to compare different MPC schemes and demonstrate improvements with respect to classic open-loop schedulers, we performed simulations using the SimWindFarm toolbox for MatLab. We demonstrate that MPC controllers allow to achieve reduction of stresses even in the case of large installations such as the 100-WTs Thanet offshore WF.

  • Details
  • Metrics
Type
research report
Author(s)
Riverso, S.
Mancini, S.
Sarzo, F.
Ferrari-Trecate, G.
Date Issued

2014

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SCI-STI-GFT  
Available on Infoscience
January 10, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/132563
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés