Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Simulating fully three-dimensional pressurized fracture propagation
 
conference poster not in proceedings

Simulating fully three-dimensional pressurized fracture propagation

Nikolskiy, Dmitry  
•
Lecampion, Brice  
2016
14th Swiss Geosciences Meeting

We report the progress on a new computational technique for fully three-dimensional simulation of propagation of hydraulic fractures in the vicinity of a wellbore. One of the components of this technique is the boundary element code for modeling the elastic deformation of rock containing pressurized cracks developed previously by the first Author (see Nikolskiy, Mogilevskaya & Labuz, 2015). This code requires the use of only surface mesh, which facilitates its coupling with models of the fluid flow through the fractures. The code also features second order polynomial approximations of the boundary unknowns, which allow for accurate resolution of the cracks opening and sliding displacement near the tips and the stresses around these tips. In the present work, we further develop the code incorporating a fracture propagation algorithm that is capable of capturing the effects of mixed-mode loading (see Lazarus et al., 2001; Pham & Ravi-Chandar, 2016). In particular, we focus on the segmentation of the fracture front observed under combined opening (mode I) and anti-plane shear (mode III) load during fracture re-orientation from a wellbore. We discuss the importance of such fracture segmentation for the stimulation of unconventional reservoirs as well as for enhanced geothermal systems.

  • Details
  • Metrics
Type
conference poster not in proceedings
Author(s)
Nikolskiy, Dmitry  
Lecampion, Brice  
Date Issued

2016

Written at

EPFL

EPFL units
GEL  
Event nameEvent placeEvent date
14th Swiss Geosciences Meeting

Geneva, Switzerland

November 18, 2016

Available on Infoscience
November 25, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/131634
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés