Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI
 
research article

Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI

Abreu, Rodolfo
•
Leite, Marco
•
Jorge, João
Show more
2016
NeuroImage

The ballistocardiogram (BCG) artifact is currently one of the most challenging in the EEG acquired concurrently with fMRI, with correction invariably yielding residual artifacts and/or deterioration of the physiological signals of interest. In this paper, we propose a family of methods whereby the EEG is decomposed using Independent Component Analysis (ICA) and a novel approach for the selection of BCG-related independent components (ICs) is used (PROJection onto Independent Components, PROJIC). Three ICA-based strategies for BCG artifact correction are then explored: 1) BCG-related ICs are removed from the back-reconstruction of the EEG (PROJIC); and 2-3) BCG-related ICs are corrected for the artifact occurrences using an Optimal Basis Set (OBS) or Average Artifact Subtraction (AAS) framework, before back-projecting all ICs onto EEG space (PROJIC-OBS and PROJIC-AAS, respectively). A novel evaluation pipeline is also proposed to assess the methods performance, which takes into account not only artifact but also physiological signal removal, allowing for a flexible weighting of the importance given to physiological signal preservation. This evaluation is used for the group-level parameter optimization of each algorithm on simultaneous EEG-fMRI data acquired using two different setups at 3T and 7T. Comparison with state-of-the-art BCG correction methods showed that PROJIC-OBS and PROJIC-AAS outperformed the others when priority was given to artifact removal or physiological signal preservation, respectively, while both PROJIC-AAS and AAS were in general the best choices for intermediate trade-offs. The impact of the BCG correction on the quality of event-related potentials (ERPs) of interest was assessed in terms of the relative reduction of the standard error (SE) across trials: 26/66%, 32/62% and 18/61% were achieved by, respectively, PROJIC, PROJIC-OBS and PROJIC-AAS, for data collected at 3T/7T. Although more significant improvements were achieved at 7T, the results were qualitatively comparable for both setups, which indicate the wide applicability of the proposed methodologies and recommendations.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.neuroimage.2016.03.034
Web of Science ID

WOS:000378047600004

Author(s)
Abreu, Rodolfo
Leite, Marco
Jorge, João
Grouiller, Frédéric
van der Zwaag, Wietske  
Leal, Alberto
Figueiredo, Patrícia
Date Issued

2016

Publisher

Elsevier

Published in
NeuroImage
Volume

135

Start page

45

End page

63

Subjects

CIBM-AIT

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LIFMET  
CIBM  
Available on Infoscience
April 4, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/125534
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés