Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The Sdss-Iv Extended Baryon Oscillation Spectroscopic Survey: Overview And Early Data
 
research article

The Sdss-Iv Extended Baryon Oscillation Spectroscopic Survey: Overview And Early Data

Dawson, Kyle S.
•
Kneib, Jean -Paul  
•
Percival, Will J.
Show more
2016
Astronomical Journal

In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d(A)(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With similar to 195,000 new emission line galaxy redshifts, we expect BAO measurements of d(A)(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d(A)(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lya forest measurements at redshifts z > 2.1; these new data will enhance the precision of d(A)(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.

  • Details
  • Metrics
Type
research article
DOI
10.3847/0004-6256/151/2/44
Web of Science ID

WOS:000371248600024

Author(s)
Dawson, Kyle S.
Kneib, Jean -Paul  
Percival, Will J.
Alam, Shadab
Albareti, Franco D.
Anderson, Scott F.
Armengaud, Eric
Aubourg, Eric
Bailey, Stephen
Bautista, Julian E.
Show more
Date Issued

2016

Publisher

Iop Publishing Ltd

Published in
Astronomical Journal
Volume

151

Issue

2

Start page

44

Subjects

cosmology: observations

•

surveys

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LASTRO  
Available on Infoscience
April 1, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/125373
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés