Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode
 
research article

Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode

He, Jianjun
•
Benkoe, Gabor
•
Korodi, Ferenc
Show more
2002
Journal of the American Chemical Society

A zinc phthalocyanine with tyrosine substituents (ZnPcTyr), modified for efficient far-red/near-IR performance in dye-sensitized nanostructured TiO2 solar cells, and its ref., glycine-substituted zinc phthalocyanine (ZnPcGly), were synthesized and characterized. The compds. were studied spectroscopically, electrochem., and photoelectrochem. Incorporating tyrosine groups into phthalocyanine makes the dye ethanol-sol. and reduces surface aggregation as a result of steric effects. The performance of a solar cell based on ZnPcTyr is much better than that based on ZnPcGly. Addn. of 3α,7α-dihydroxy-5β-cholic acid (cheno) and 4-tert-butylpyridine (TBP) to the dye soln. when prepg. a dye-sensitized TiO2 electrode diminishes significantly the surface aggregation and, therefore, improves the performance of solar cells based on these phthalocyanines. The highest monochromatic incident photo-to-current conversion efficiency (IPCE) of ∼24% at 690 nm and an overall conversion efficiency (η) of 0.54% were achieved for a cell based on a ZnPcTyr-sensitized TiO2 electrode. Addn. of TBP in the electrolyte decreases the IPCE and η considerably, although it increases the open-circuit photovoltage. Time-resolved transient absorption measurements of interfacial electron-transfer kinetics in a ZnPcTyr-sensitized nanostructured TiO2 thin film show that electron injection from the excited state of the dye into the conduction band of TiO2 is completed in ∼500 fs and that more than half of the injected electrons recombines with the oxidized dye mols. in ∼300 ps. In addn. to surface aggregation, the very fast electron recombination is most likely responsible for the low performance of the solar cell based on ZnPcTyr.

  • Details
  • Metrics
Type
research article
DOI
10.1021/ja0178012
Author(s)
He, Jianjun
Benkoe, Gabor
Korodi, Ferenc
Polivka, Tomas
Lomoth, Reiner
Kermark, Bjoern
Sun, Licheng
Hagfeldt, Anders  
Sundstroem, Villy
Date Issued

2002

Published in
Journal of the American Chemical Society
Volume

124

Start page

4922

End page

4932

Subjects

solar cell titania electrode modified phthalocyanine

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LSPM  
Available on Infoscience
July 6, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/115672
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés