Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Elucidating the Role of Site-Specific Nitration of alpha-Synuclein in the Pathogenesis of Parkinson's Disease via Protein Semisynthesis and Mutagenesis
 
research article

Elucidating the Role of Site-Specific Nitration of alpha-Synuclein in the Pathogenesis of Parkinson's Disease via Protein Semisynthesis and Mutagenesis

Burai, Ritwik  
•
Ait-Bouziad, Nadine
•
Chiki, Anass  
Show more
2015
Journal Of The American Chemical Society

Parkinsons disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of intraneuronal inclusions consisting of aggregated and post-translationally modified a-synuclein (a-syn). Despite advances in the chemical synthesis of a-syn and other proteins, the generation of site-specifically nitrated synthetic proteins has not been reported. Consequently, it has not been possible to determine the roles of nitration at specific residues in regulating the physiological and pathogenic properties of a-syn. Here we report, for the first time, the site-specific incorporation of 3-nitrotyrosine at different regions of a-syn using native chemical ligation combined with a novel desulfurization strategy. This strategy enabled us to investigate the role of nitration at single or multiple tyrosine residues in regulating a-syn structure, membrane binding, oligomerization, and fibrils formation. We demonstrate that different site-specifically nitrated a-syn species exhibit distinct structural and aggregation properties and exhibit reduced affinity to negatively charged vesicle membranes. We provide evidence that intermolecular interactions between the N- and C-terminal regions of a-syn play critical roles in mediating nitration-induced a-syn oligomerization. For example, when Y39 is not available for nitration (Y39F and Y39/125F), the extent of cross-linking is limited mostly to dimer formation, whereas mutants in which Y39 along with one or multiple C-terminal tyrosines (Y125F, Y133F, Y136F and Y133/136F) can still undergo nitration readily to form higher-order oligomers. Our semisynthetic strategy for generating site-specifically nitrated proteins opens up new possibilities for investigating the role of nitration in regulating protein structure and function in health and disease.

  • Details
  • Metrics
Type
research article
DOI
10.1021/ja5131726
Web of Science ID

WOS:000353606700035

Author(s)
Burai, Ritwik  
Ait-Bouziad, Nadine
Chiki, Anass  
Lashuel, Hilal A.  
Date Issued

2015

Publisher

Amer Chemical Soc

Published in
Journal Of The American Chemical Society
Volume

137

Issue

15

Start page

5041

End page

5052

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMNN  
Available on Infoscience
May 29, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/114256
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés