Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFexCo1-xPO4
 
research article

Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFexCo1-xPO4

Strobridge, Fiona C.
•
Middlemiss, Derek S.
•
Pell, Andrew J.
Show more
2014
JOURNAL OF MATERIALS CHEMISTRY A

Olivine-type LiCoPO4 (LCP) is a high energy density lithium ion battery cathode material due to the high voltage of the Co2+/Co3+ redox reaction. However, it displays a significantly poorer electrochemical performance than its more widely investigated isostructural analogue LiFePO4 (LFP). The co-substituted LiFexCo1-xPO4 olivines combine many of the positive attributes of each end member compound and are promising next-generation cathode materials. Here, the fully lithiated x = 0, 0.25, 0.5, 0.75 and 1 samples are extensively studied using P-31 solid-state nuclear magnetic resonance (NMR). Practical approaches to broadband excitation and for the resolution of the isotropic resonances are described. First principles hybrid density functional calculations are performed on the Fermi contact shift (FCS) contributions of individual M-O-P pathways in the end members LFP and LCP and compared with the fitted values extracted from the LiFexCo1-xPO4 experimental data. Combining both data sets, the FCS for the range of local P environments expected in LiFexCo1-xPO4 have been calculated and used to assign the NMR spectra. Due to the additional unpaired electron in d(6) Fe2+ as compared with d(7) Co2+ (both high spin), LFP is expected to have larger Fermi contact shifts than LCP. However, two of the Co-O-P pathways in LCP give rise to noticeably larger shifts and the unexpected appearance of peaks outside the range delimited by the pure LFP and LCP P-31 shifts. This behaviour contrasts with that observed previously in LiFexMn1-xPO4, where all P-31 shifts lay within the LiMnPO4-LFP range. Although there are 24 distinct local P environments in LiFexCo1-xPO4, these group into seven resonances in the NMR spectra, due to significant overlap of the isotropic shifts. The local environments that give rise to the largest contributions to the spectral intensity are identified and used to simplify the assignment. This provides a tool for future studies of the electrochemically-cycled samples, which would otherwise be challenging to interpret.

  • Details
  • Metrics
Type
research article
DOI
10.1039/c4ta00934g
Web of Science ID

WOS:000339535100052

Author(s)
Strobridge, Fiona C.
Middlemiss, Derek S.
Pell, Andrew J.
Leskes, Michal
Clement, Raphaele J.
Pourpoint, Frederique
Lu, Zhouguang
Hanna, John V.
Pintacuda, Guido
Emsley, Lyndon  
Show more
Date Issued

2014

Publisher

ROYAL SOC CHEMISTRY

Published in
JOURNAL OF MATERIALS CHEMISTRY A
Volume

2

Issue

30

Start page

11948

End page

11957

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LRM  
Available on Infoscience
January 8, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/109948
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés