Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Extended Bottom-Up Proteomics with Secreted Aspartic Protease Sap9
 
research article

Extended Bottom-Up Proteomics with Secreted Aspartic Protease Sap9

Laskay, Ünige A.
•
Srzentić, Kristina
•
Monod, Michel
Show more
2014
Journal of Proteomics

We investigate the benefits and experimental feasibility of approaches enabling the shift from short (1.7 kDa on average) peptides in bottom-up proteomics to about twice longer (similar to 3.2 kDa on average) peptides in the so-called extended bottom-up proteomics. Candida albicans secreted aspartic protease Sap9 has been selected for evaluation as an extended bottom-up proteomic-grade enzyme due to its suggested dibasic cleavage specificity and ease of production. We report the extensive characterization of Sap9 specificity and selectivity revealing that protein cleavage by Sap9 most often occurs in the vicinity of proximal basic amino acids, and in select cases also at basic and hydrophobic residues. Sap9 is found to cleave a large variety of proteins in a relatively short, similar to 1 h, period of time and it is efficient in a broad pH range, including slightly acidic, e. g., pH 5.5, conditions. Importantly, the resulting peptide mixtures contain representative peptides primarily in the target 3-7 kDa range. The utility and advantages of this enzyme in routine analysis of protein mixtures are demonstrated and the limitations are discussed. Overall, Sap9 has a potential to become an enzyme of choice in an extended bottom-up proteomics, which is technically ready to complement the traditional bottom-up proteomics for improved targeted protein structural analysis and expanded proteome coverage. Biological significance Advances in biological applications of mass spectrometry-based bottom-up proteomics are oftentimes limited by the extreme complexity of biological samples, e.g., proteomes or protein complexes. One of the reasons for it is in the complexity of the mixtures of enzymatically (most often using trypsin) produced short (<3 kDa) peptides, which may exceed the analytical capabilities of liquid chromatography and mass spectrometry. Information on localization of protein modifications may also be affected by the small size of typically produced peptides. On the other hand, advances in high-resolution mass spectrometry and liquid chromatography have created an intriguing opportunity of improving proteome analysis by gradually increasing the size of enzymatically-derived peptides in MS-based bottom-up proteomics. Bioinformatics has already confirmed the envisioned advantages of such approach. The remaining bottle-neck is an enzyme that could produce longer peptides. Here, we report on the characterization of a possible candidate enzyme, Sap9, which may be considered for producing longer, e.g., 3-7 kDa, peptides and lead to a development of extended bottom-up proteomics. (C) 2014 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.jprot.2014.07.035
Web of Science ID

WOS:000345183200003

Author(s)
Laskay, Ünige A.
Srzentić, Kristina
Monod, Michel
Tsybin, Yury O.  
Date Issued

2014

Publisher

Elsevier Science Bv

Published in
Journal of Proteomics
Volume

110

Start page

20

End page

31

Subjects

Bottom-up proteomics

•

Extended bottom-up proteomics

•

Middle-down proteomics

•

Enzymatic digestion

•

High-resolution mass spectrometry

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSMB  
Available on Infoscience
August 13, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/105476
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés