Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Gramian-Based Adaptive Combination Policies For Diffusion Learning Over Networks
 
conference paper

Gramian-Based Adaptive Combination Policies For Diffusion Learning Over Networks

Erginbas, Y. Efe
•
Vlaski, Stefan  
•
Sayed, Ali H.  
January 1, 2021
2021 Ieee International Conference On Acoustics, Speech And Signal Processing (Icassp 2021)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

This paper presents an adaptive combination strategy for distributed learning over diffusion networks. Since learning relies on the collaborative processing of the stochastic information at the dispersed agents, the overall performance can be improved by designing combination policies that adjust the weights according to the quality of the data. Such policies are important because they would add a new degree of freedom and endow multi-agent systems with the ability to control the flow of information over their edges for enhanced performance. Most adaptive and static policies available in the literature optimize certain performance metrics related to steady-state behavior, to the detriment of transient behavior. In contrast, we develop an adaptive combination rule that aims at optimizing the transient learning performance, while maintaining the enhanced steady-state performance obtained using policies previously developed in the literature.

  • Details
  • Metrics
Type
conference paper
DOI
10.1109/ICASSP39728.2021.9414449
Web of Science ID

WOS:000704288405096

Author(s)
Erginbas, Y. Efe
Vlaski, Stefan  
Sayed, Ali H.  
Date Issued

2021-01-01

Publisher

IEEE

Publisher place

New York

Published in
2021 Ieee International Conference On Acoustics, Speech And Signal Processing (Icassp 2021)
ISBN of the book

978-1-7281-7605-5

Start page

5215

End page

5219

Subjects

Acoustics

•

Computer Science, Artificial Intelligence

•

Computer Science, Software Engineering

•

Engineering, Electrical & Electronic

•

Imaging Science & Photographic Technology

•

Computer Science

•

Engineering

•

distributed learning

•

diffusion strategy

•

combination weights

•

adaptive network

•

optimization

•

performance

•

adaptation

•

algorithm

•

consensus

•

squares

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ASL  
Event nameEvent placeEvent date
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

ELECTR NETWORK

Jun 06-11, 2021

Available on Infoscience
December 4, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183544
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés