Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Don't Use Large Mini-Batches, Use Local SGD
 
conference paper

Don't Use Large Mini-Batches, Use Local SGD

Lin, Tao  
•
Stich, Sebastian Urban  
•
Patel, Kumar Kshitij
Show more
2019
Proceedings of the 8th International Conference on Learning Representations
ICLR 2020 8th International Conference on Learning Representations

Mini-batch stochastic gradient methods (SGD) are state of the art for distributed training of deep neural networks. Drastic increases in the mini-batch sizes have lead to key efficiency and scalability gains in recent years. However, progress faces a major roadblock, as models trained with large batches often do not generalize well, i.e. they do not show good accuracy on new data. As a remedy, we propose a \emph{post-local} SGD and show that it significantly improves the generalization performance compared to large-batch training on standard benchmarks while enjoying the same efficiency (time-to-accuracy) and scalability. We further provide an extensive study of the communication efficiency vs. performance trade-offs associated with a host of \emph{local SGD} variants.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés