Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. First principles study of the effect of hydrogen in austenitic stainless steels and high entropy alloys
 
research article

First principles study of the effect of hydrogen in austenitic stainless steels and high entropy alloys

Zhou, Xiao  
•
Curtin, William  
September 28, 2020
Acta Materialia

Hydrogen (H) embrittlement in multicomponent austenitic alloys is a serious limitation to their application in many environments. Recent experiments show that the High-Entropy Alloy (HEA) CoCrFeMnNi absorbs more H than 304 Stainless Steel but is less prone to embrittlement while the HEA CoCrFeNi is not embrittled under comparable conditions. As a first step toward understanding H embrittlement, here a comprehensive first-principles study of H absorption, surface, and fracture energies in the presence of H is presented for 304 Stainless Steel, 316 Stainless Steel, CoCrFeNi, and CoCrFeMnNi. A collinear paramagnetic model of the magnetic state is used, which is likely more realistic than previous proposed magnetic states. All alloys have a statistical distribution of H absorption sites. Hence, at low concentrations, H is effectively trapped in the lattice making it more difficult for H to segregate to defects or interfaces. Agreement with experimental H solubilities across a range of chemical potentials can be achieved with minor fitting of the average H absorption energy. The (111) surface energies for 0, 50, and 100% H surface coverage are very similar across all alloys. The fracture energies for two representative thermodynamic conditions are then determined. SS304 and CoCrFeNi are found to have the lowest fracture energies, but experiments suggest rather different embrittlement tendencies. These results indicate that differences in H embrittlement across these austenitic alloys are not due solely to differences in H absorption or H-reduced fracture energy, thus requiring more sophisticated concepts than those recently found successful for fcc Ni.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/j.actamat.2020.09.070
Web of Science ID

WOS:000580631600078

Author(s)
Zhou, Xiao  
Curtin, William  
Date Issued

2020-09-28

Published in
Acta Materialia
Volume

200

Start page

932

End page

942

Subjects

Hydrogen embrittlement

•

complex alloys

•

H absorption

•

surface energy

Note

This is an Open Access article under the terms of the Creative Commons Attribution License

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LAMMM  
Available on Infoscience
December 7, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/173919
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés