Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Structure of optimal schedules in diamond networks
 
conference paper

Structure of optimal schedules in diamond networks

Brahma, Siddhartha  
•
Fragouli, Christina  
2014
2014 Ieee International Symposium On Information Theory (Isit)
IEEE International Symposium on Information Theory (ISIT)

We consider Gaussian diamond networks with n half-duplex relays. At any point of time, a relay can either be in a listening (L) or transmitting (T) state. The capacity of such networks can be approximated to within a constant gap (independent of channel SNRs) by solving a linear program that optimizes over the 2(n) relaying states. We recently conjectured, and proved for the cases of n = 2, 3, that there exist optimal schedules with at most n+1 active states, instead of the possible 2(n). In this paper we develop a computational proof strategy that relies on submodularity properties of information flow across cuts in the network and linear programming duality to resolve the conjecture. We implement the strategy for n = 4, 5, 6 and show that indeed there exist optimal schedules with at most n+1 active states in these cases (1).

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés