Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Analysis of Multiphase Single-Sided Linear Induction Motors for Combined Propulsion and Levitation of Maglev Vehicles
 
research article

Analysis of Multiphase Single-Sided Linear Induction Motors for Combined Propulsion and Levitation of Maglev Vehicles

Rametti, Simone  
•
Pierrejean, Lucien  
•
Hodder, André  
Show more
September 2025
IEEE Transactions on Magnetics

Thanks to the rapid growth of multiphase drives (MPDs), multiphase (MP) rotating electrical machines have gained popularity in the scientific community, demonstrating several advantages compared to traditional three-phase ones. Although MP rotating machines have been extensively studied in the literature, little research has been carried out on MP linear electrical machines and their application in the transportation sector. In this context, this article proposes a highly accurate and computationally efficient analytical model of MP single-sided linear induction motors (SLIMs) validated through comparison with finite-element analysis (FEA) simulations over a large interval of operational speeds (i.e., 0 \mathrm m \cdot \mathrm s^-1 łeq v_m łt 150 \mathrm m \cdot \mathrm s^-1 ). The proposed model, obtained by extending the one published in previous works by the authors, is used to analyze the performance of different MP SLIMs in terms of forces (i.e., thrust and normal force) and efficiency. A comparison with a three-phase SLIM is presented too. Furthermore, the effect of an iron appendix installed at the rear of the motor, which has been shown to increase the levitation force of SLIMs at high speed, has been added to the presented analysis. The results of the analysis demonstrate that an MP supply greatly affects the forces developed by the SLIMs and represents a solution to integrate propulsion and levitation (PL) functionalities into a single LIM for magnetic levitation (maglev) vehicles.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés